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Received 9 December 1993 

Abslract The critical exponents of the me@-insulator transition in disordered systems have 
been the subject of much published work containing often contradictory results. Values ranging 
between and 2 can be found even in the recent literature In this paper the results of a long- 
term study of lhe transition are presented. The data have been calculated with sufficient accuracy 
(0.2%) lhal the calculated exponenl can be quoted as s = Y = 1.54 i. 0.08 with confidence. Tbe 
reasons for the previous scatter of results axe discussed. 

1. Introduction 

The metal-insulator transition in disordered systems has been the subject of theoretical 
and experimental work at least since the article by Anderson (1958);The similarities with 
thermodynamic phase transitions had been noted by several authors (Thouless 1974, Wegner 
1976) but it was not until 1979 that a usable formulation of the renormalization goup or 
scaling theory became available (Abrahams et ol 1979, Wegner 1979, Efetov 1983). The 
basic assumption of these theories, that the behaviour could be described by a single 
parameter scaling theory, was confirmed in numerical calculations by the present author 
(MacKinnon and Kramer 1981, 1983). For a recent review of the area see the article by 
Kramer and MacKinnon (1994). 

In spite of the progress made the exponents, s and U, describing the behaviour of 
the conductivity and the localization length respectively, have proven difficult to calculate 
reliably. For some time there appeared to be a consensus between theory and experiment that 
both exponents were equal to unity, but more recently this has been called into question from 
both the theoretical (Kravtsov and Lerner 1984, Lemer 1991) and from the experimental 
(Stupp ez al 1993) side. 

Numerical results have been scattered at least between 0.5 and 2 with numerous attempts 
at developing alternative methods of calculation. A good example of the difficulties is 
given by the contrast between calculations for the Anderson model with rectangular or 
Gaussian disorder (Kramer et ol 1990). Using identical methods the exponents obtained 
were about 1.5 and 1.0 for the rectangular and Gaussian distributions respectively. It is 
clearly unreasonable for the exponents for these two cases to be different. In fact if they 
were different then it would call into question the justification of the use of any simple 
model Hamiltonian to describe the transition and so undermine the whole foundation of the 
subject. 
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In this paper the results of calculations carried out over several years are presented. All 
the basic results have an accuracy of at least 0.2%, which enables the critical exponents to 
be calculated much more accurately than when the conventional I% is used. 

2. "&er matrix calculations 

The transfer matrix method has been discussed in numerous papers (MacKinnon and Gamer 
1983. Pichard and Sarma 1981) so only the brief outline will be attempted here. 

The starting point is the usual Anderson (1958) Hamiltonian 

where Vjj = VO between nearest neighbours on a simple cubic lattice and zero otherwise. 
In this work VO = 1 is chosen and will therefore not be mentioned explicitly. The diagonal 
elements 6; are independent random numbers chosen either from a uniform rectangular 
distribution with -$W c 6i c +$W or from a Gaussian distribution of standard deviation 
U. For purposes of comparison between the two cases an effective W for the Gaussian case 
may be defined by equating the variances as W 2  = 120~. 

In terms of the coefficients ai of the wavefunctions on each site the Schrodinger equation 
may be written in the form 

Consider now a long bar composed of L slices of cross-section M x M. By combining 
the ai values from each slice into a vector Ai (2) can be written in the concise form 

where the subscripts n now refer to slices and matrix H, is the Hamiltonian for slice n. By 
rearranging (3) the transfer matrix is obtained 

A theorem attributed to Oseledec (1968) states that 

where Y is a well defined matrix and T, are product of random matrices. The logarithms 
of the eigenvalues of Y are referred to as Lyapunov exponents and occur in pairs that 
are reciprocals of one another. By comparison with (4) the Lyapunov exponents may be 
identified with the rate of exponential rise (or fall) of the wave functions. In fact the smallest 
exponent corresponds to the longest decay length and hence to the localization length of 
the system. 
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In principle then it is necessary to calculate T, for large n, and diagonalize TtT. 
Unfortunately, the calculation is not quite so simple: the different eigenvalues of TtT 
rise at different rates so that the smallest, which we seek, rapidly becomes insignificant 
compared to the largest and is lost in the numerical rounding error. Typically thii happens 
after about 10 steps. 

2.1. Orthogonalization 

In order to obtain the smallest Lyapunov exponent it is necessary to overcome this loss of 
numerical significance. This can be achieved in more than one way, the orthogonalization 
method is employed here. 

After about 10 matrices have been multiplied together the columns of the product 
matrix are orthogonalized to each other and normalized. This is equivalent to multiplying 
the product from the right by an appropriate matrix. This orthogonalization process 
automatically separates the different exponentially growing contributions. 

The process is repeated every 10 or so steps and the logarithm of the length of the 
vector closest to unity is stored. The Lyapunov exponent is given by the mean value of 
these logarithms divided by the number of steps between orthogonalizations. In practice 
it is necessary to use only 50% or M x M vectors rather than the full 2 x M x M as the 
required vector is invariably the (M x M)th. 

The error in the Lyapunov exponent can be estimated from the variance corresponding 
to the mean exponent. Although this estimate could be biased by correlations between the 
different contributions this is not found to be a serious problem in practice, at least when 
the localization length is short compared with the distance between orthogonalization steps. 

The optimum frequency of orthogonalization steps can be estimated by comparing the 
length of the (M x M)th vector before and after orthogonalization. The ratio should not be 
allowed to become close to the machine accuracy. 

3. Scaling theory 

The inverse of the smallest Lyapunov exponent is the localization length h.,. The 
renormalized length A = AM/M is found to obey a scaling theory (MacKinnon and Kramer 
1981, 1983) such that 

(6) 

which has solutions of the form 

where f is a characteristic length scale, which can be identified with the localization length 
of the insulator, and which scales as the reciprocal of the resistivity of the metallic phase 
(MacKinnon and Garner 1983). 

In 3D (6) always has a fixed point x = 0 which corresponds to the metal-insulator 
transition. The behaviour close to the transition can be found by linearizing (6) and solving 
to obtain 

In A = In A, + A(" - rc) Mm 
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where r is the disorder W or U ,  A, and rc represent the critical A and disorder respectively, 
and A and (Y are constants. By comparing (7) and (8) an expression for 6 can be obtained 
in the form 

so that the localization length exponent U is given by U = lju. Since it is well known 
(Wegner 1976, Abrahams et ai 1979) that the conductivity exponent s is related to U by 
s = (d-2)u then by fitting (8) to the data and calculating (Y both exponents can be obtained. 

Table 1. 

Rectangular Gaussian 

Exponent 1.515~0.033 1.484f0.048 
Disorder m g e  16.2 < W < 16.8 
System sizes 4 < M < 1 2  4 < M < 1 2  

21.0 6 W < 21.5 

x 2  (expected) 1 42 97 
x 2  (fitted) 126 75 
Wc = 16.50*0.05 21.u)*o.c6 
0, 4.763+0.015 6.120*0.018 

A. 9 0.580+0.005 0.58010.005 

a The estimates of W, and A. are based on Ole values given by seved  different fitting procedures. 

3.1. Deviations from scaling 

One simple feature of (8) is that, when In A is plotted against r,  the curves for different M 
intersect at a common point (In Ac, G). In practice the data do not behave in exactly this 
way. There is a small deviation from scaling. This deviation could be taken into account 
by adding to (8) an exha term that depends on M but not on r .  Consider, however, the 
form 

(10) 

which represents the most general form of such a correction. If a specific form for the 
correction were assumed it would require at least four independent fitting parameters to 
represent B(M) ,  including A, and r,, and may still not represent the hue deviation from 
scaling. It seems better therefore to fit an independent B ( M )  for each value of M and 
therefore to make no assumption about the nature of the deviation from scaling, other than 
that it is non-critical, and therefore independent of 5 ,  in the region of interest. By fitting the 
data to (10) in this way the exponent (Y is derived solely from the gadient of In A versus 
r and the intercept is allowed to float. The results of such fits are shown in figure 1. 

3.2. Data fitting 

The data can be fitted to (10) by iteratively using a standard least-squares procedure. Care is 
required with the non-linear parameter (Y. The quality of the fit can be tested by computing 
,yz, defined as 

In A = AsM' + B ( M )  

(11) 
(AriMF + B(Mi )  - Inhi)' 

4 X2=C 
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I I I I I I 
16.2 16.3 164 16.5 16.6 16.7 16.8 

Disorder 

Gaussian 

0860 

0.555 

I I I I I 
21.0 21 .1 213 21.3 21.4 21.5 

Disorder 

Figure 1. A versus W, for rectangular and Gaussian distributions. The data are represented 
by dots with differing symbols for different system sizes with 4 < M 6 12 increasing in the 
direction of the arrow. Each paint is accurate to 0.2%. The lines are fiW using (10). 
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where i runs over all data points and U; is the error in point i .  After fitting, x2 should be 
approximately equal to the number of data points minus the number of fitted parameters. 
Hence the value of x z  provides a measure of the quality of the fit. In the results presented 
here the range of values of disorder round the critical value was chosen such that x2 
conforms to this condition. Then a large number of additional points was calculated inside 
this range. An important side effect of this procedure is that the apparently acceptable 
range of disorder around the fixed point becomes narrower as the calculations become more 
accurate. It is therefore important to test whether any apparent change in the fitted exponent 
is due to this narrowing. 

The values of the ideal and the fitted x 2  as well as the range considered are shown in 
table 1. Using 4 < M < 12 and the widest range of disorder, s = U = 1.53 i 0.04 and 
s = U = 1.48 i 0.05 for rectangular and Gaussian cases respectively. 

3.3. Statisticd and systematic ermrs 
The statistical error in the fitted critical exponent is easily estimated from the least-squares 
fitting procedure. Systematic errors are more difficult to take into account. In this work an 
attempt is made to consider three sources of systematic error, as follows. 

(i) The limited range of system sizes: 4 6 M 6 12 has been considered and the effect 
of ignoring the smaller system sizes tested. 

(ii) The width of the critical region: the maximum range of disorder is imposed by x2 
but may still be too large. The effect of narrowing this range still further has been tested. 

(iii) The choice of distribution of random numbers: this has been tested by comparing 
the rectangular and Gaussian cases. 

These tests are represented in figure 2, Unfortunately the general increase in the error 
bars due to ignoring data tends to mask any systematic changes. There does however appear 
to be a general increase in the exponents when the M = 4 data are eliminated and a tendency 
for the Gaussian data to lie below the rectangular. From these data s = U N 1.54 f 0.08 
has been estimated, where the error bar may be somewhat wider than necessary. 

4. Results and conclusions 

The results are summarized in table 1. All these results have been calculated in the middle 
of the band (i.e. E = 0), but there is ample evidence that for the models considered here, 
this point is not special and is tmly representative of the whole band, at least in the range 
-6 < E  < 6. 

Unlike previous calculations (Kramer et al 1990) the exponents calculated for the two 
distributions now overlap well and are therefore consistent with the common assumption 
that simply changing the distAbution does not change the universality class and hence the 
critical exponent The discrepancy reported previously is presumably due to insufficient 
accuracy in the raw data and consequent assumption of a critical range of disorder that was 
too wide. 

This may have consequences for experiment as it seems to suggest that it is possible to 
obtain an exponent of unity simply by using too wide a range of data around the critical 
disorder, energy, pressure, etc. It should also be bome in mind that the influence of 
interactions may also accomt for differences between experimental results and those based 
on a model of non-interacting electrons. For this reason it may be more realistic to compare 
the present results with photonic or acoustic rather than electronic experiments. 

In summary, the critical exponent of the Anderson model of the metal-insuIator 
transition is s = U = 1.54 f 0.08. 
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Critical Erponenu. Statistical and Systematic Enon 
1.9 , I 

1.2 I I 
4 5 6 

Flgure 2. Fitted critical exponents for reetangular (diamonds) and Gaussian (squares) 
distributions. The abscissae represent the smallest ~yxtem size taken into account (with small 
offsets for clarity). In each group the width of the fitted region is (from left to right) (16.2 
S W 6 16.8) + (16.3 < W C 16.7) + (16.4 Q W 6 16.6) and (21.0 4 W S 21.5) + (21.05 
< W 4 21.45) + (21.1 S W 6 21.4) for rectangulx and Gaussian cases respectively. The 
dotted lines represent the range s = Y = 1.54 i 0.8. ' 
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